Kansas Wate Hub

Motivation

Data

Descriptiv Analysis

Future Work

Water Quality in Kansas

Kansas Water Hub

University of Kansas

June 24th, 2024

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Kansas Wate Hub

Motivation

Data

Descriptiv Analysis

Future Work

Motivation for Project

Improve the State's Water Quality

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Where do we think about water quality?

Kansas Wate Hub

Motivation

Data

Descriptive Analysis

Future Work

Surface Water Quality

Nitrates, phosphorus, atrazine, bromides, uranium, chlorides and other contaminants are impacting surface water quality.

Public Water Supply Systems

Water quality testing in public supply systems is necessary for these systems to maintain compliance with the Safe Drinking Water Act.

Groundwater Quality

Though the ground serves as a great filtration system, chemicals and gases can still cause groundwater quality issues and contamination. Groundwater contaminants may be natural or human-caused.

Data, Research, and Study Needs

Motiv

as Water Hub	Continue investigation of historical HAB oc-	Support the Ground- water Management
ation	currences, the factors that cause HABs, and methods to prevent and	District (GMD) 5 study with Kansas State University (KSU) con-
	treat HABs.	cerning nitrate levels in private wells with
		assistance from KDA- Division of Conservation and KDHE.
	Support mineralization studies including those conducted by KDHE and KGS in southwest and northwest Kansas.	Facilitate/support data collection of groundwa- ter and surface water quality.

Table: Kansas Water Plan Highlighted Needs

Questions of Interest

Kansas Wate Hub

Motivation

Data

Descriptive Analysis

Future Work

Where are water quality needs the greatest?

Which communities face the most significant water quality needs, and how can this be measured across the range of characteristics. Is there a composite measure that is useful?

How can we overlay water quality measurements with demographic information?

What is the geographic mapping that makes the most sense to connect demographic information with surface water quality tests?

How do we think about the relationship between surface water and public water systems?

We have information about water quality testing for both surface water and public water supplies. Is there a benefit to linking this data in some way? Kansas Wate Hub

Motivation

Data

Descriptiv Analysis

Future Work

Overview of Data

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Organizations in Water Quality Portal Collecting Information about Kansas

	Organization	Count	Percent	Cumulative
				Percent
	Blue River Watershed Association	27	0.00	0.03
	CSC (Computer Sciences Corporation)	115	0.00	0.04
	Cheyenne and Arapaho Tribes of Oklahoma	66	0.00	0.04
	EMAP-Great Rivers Ecosystems	17,787	0.62	0.66
ata	EPA National Aquatic Resource Survey	416	0.01	0.67
ata	EPA National Aquatic Resources Survey (NARS)	30,342	1.06	1.73
	EPA R7	91,533	3.19	4.92
	Kansas Biological Survey	135	0.00	4.93
	Kansas Department Of Health And Environment	1,599,203	55.74	60.67
	Kansas Water Office	1,231	0.04	60.71
	Kaw Nation, Oklahoma (Tribal)	449	0.02	60.73
	Kickapoo Tribe of Indians of the Kickapoo Nation	15,829	0.55	61.28
	Missouri Dept. of Conservation	3	0.00	61.28
	Missouri Dept. of Natural Resources	324	0.01	61.29
	National Park Service Water Resources.	1,066	0.04	61.33
	Nebraska Department of Environment an	10,786	0.38 61.70	
	North American Lake Management Society	206	0.01	61.71
	Oklahoma Dept. of Agriculture, Food a	32	0.00	61.71
	Peoria Tribe of Indians of Oklahoma	583	0.02	61.73
	Prairie Band Potawatomi Nation (Tribal)	30,993	1.08	62.81
	Quapaw Tribe of Indians, Oklahoma (Tr	430	0.01	62.83
	Sac & Fox Nation of Missouri in Kansas	4,372	0.15	62.98
	US EPA Region 7	8	0.00	62.98
	USEPA	4,004	0.14	63.12
	USGS Kansas Water Science Center	1,058,014	36.88	100.00
	USGS Missouri Water Science Center	38	0.00	100.00
	USGS Oklahoma Water Science Center	14	0.00	100.00

Primary Organizations Used in Data

Kansas Wate Hub

Motivation

Data

Descriptive Analysis

Future Work

Kansas Department of Health and Environment

1 KDHE maintains surface water quality standards

US EPA Region 7 Office

1 EPA's page for water quality standards

US Geological Survey

 The USGS maintains a number of continuous water quality gauges in the state of Kansas.

All of this data is aggregated together in the Water Quality Portal (Link)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

EPA Region 7 Office Test Sites in Kansas

Dataset Used: EPA Region 7 Kansas locations

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

KDHE Test Sites in Kansas

Kansas Wate Hub

Motivation

Data

Descriptiv Analysis

Future Work

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Dataset Used: KDHE locations

Information in the Water Quality Portal

Kansas Wate Hub

Motivation

Data

Descriptive Analysis

Future Work

Table: A selection of characteristics for which test results are available in the Water Quality Portal

Characteristic Name	Freq.	Percent
Alkalinity	21,362	2.93
Barium	21,288	2.92
Calcium	21,336	2.93
Chloride	21,347	2.93
Escherichia coli	13,776	0.53
Fluoride	19,432	2.67
Hardness, Ca, Mg	21,327	2.93
Kjeldahl nitrogen	20,529	2.82
Magnesium	21,336	2.93
Nickel	20,136	2.76
Phosphorus	20,464	2.81
Potassium	21,337	2.93
Silica	21,336	2.93
Sodium	21,337	2.93
Specific conductance	21,364	2.93
Sulfate	21,349	2.93
Turbidity	21,209	2.91
pН	21,800	2.99
Total	728,487	

▲ 耳 ▶ 耳 ● の Q (~

Data Structure

Kansas Wateı Hub

Motivation

Data

Descriptive Analysis

Future Work

Water Quality Portal Data Structure

Data is structured at the characteristic - location - institution level.

Data Wrangling: Part 1

Separate out EPA Region 7 data, KDHE data, and USGS data. Construct a panel over time by location-year for each of those subsets.

Data Wrangling: Part 2

Use ArcGIS spatial joins to add various geographical boundaries on the lat-lon specific locations in the Water Quality Portal.

Kansas Wate Hub

Motivation

Data

Descriptive Analysis

Future Work

Descriptive Analysis

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Are water characteristics associated with each other?

How do characteristics compare across space within Urban Streams Data? (Turbidity)

Dataset Used: EPA Region 7 Water Quality Portal Data

▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

How do characteristics compare across space within Urban Streams Data? (E-coli)

Dataset Used: EPA Region 7 Water Quality Portal Data

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Expanding to all of Kansas: counties where E-coli measurements have significantly increased

Motivation

Data

Descriptive Analysis

Future Work

Dataset Used: KDHE Water Quality Portal Data

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

All counties which saw an E-coli increase between 2006 and 2016

Descriptive Analysis

Future Work

Change in E-coli by County: 2006 vs. 2016

All counties which saw an E-coli decrease between 2006 and 2016

Kansas Water Hub

Motivation

Data

Descriptive Analysis

Future Work

Dumbbell Plot

Change in E-coli by County: 2006 vs. 2016

• 2016 • 2006

	-		
	•		
	-		
	•		
	•		
	-		
	-		
- T	<u> </u>		
			•
1 (2 🔿 1			
	•		
	_		

Average E-coli measurements across full sample time period by county

Data Used: KDHE Water Quality Portal Data

・ロト・日本・日本・日本・日本・日本・日本

Demographics in Kansas at the County Level

Kansas Wate Hub

Motivation

Data

Descriptive Analysis

Future Work

Table: County population and demographics range significantly across the 105 counties in Kansas

Variable	Ν	Mean	Std. Dev.	Min	Max
Population	105	27,973	81,714.79	1,223	619,195
Male	105	14,052	40,581.75	615	306,748
Female	105	13,921	41,138.33	608	312447
White	105	24,016	68,073.54	1,181	532,871
Black	105	1,740	6,828.96	8	48,711
Native American	105	42.34	111.00	0	753
Asian	105	901	4,137.60	3	33,788
Hispanic	105	3,648	11,276	73	84,538

Population impacted by changes in E-coli levels between 2006 and 2016

Kansas Wate Hub

Motivatio

Data

Descriptive Analysis

Future Work

Variable	Untested	Increased	Decreased
Vallable	ontesteu	increased	Decreased
	Counties	Counties	Counties
Counties	27	47	31
Population	249,448	714,958	1,972,744
Male	126,826	361,120	987,509
Female	122,622	353,838	985,235
White	229,684	649,011	164,2963
Black	6,108	22,519	154,029
Native American	589	1,356	2,501
Asian	4226	8,620	81,770
Hispanic	71,843	64,173	247,019

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Sneak peak of the dashboard

Tread Ellis

Ness

lodger Finne amilton Kearny

> Grav Ford

Meade

Descriptive Analysis

GreeleyWichita Scott Lane

Stanton Grant Haskel

StevensBewar

EPA Water Quality Testing

Bickinsor

This map shows the locations of EPA testing on water quality by analyte tested for. Red markers indicate samples where concentrations were found to exceed KDHE water quality guidelines for Aquatic Life (Acute and Chronic). Agriculture (Livestock and Irrigation), or Public Health (Food Procurement and Domestic Water Supply). The graph below compares detected concentrations to these standards and is accompanied by a brief description of the characteristic found.

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

Water quality interactive visualizations

Bartor

Prati Kiowa

Clark Comanne Barber

Kinoman

eaflet | Tiles © Esri - Esri, DeLorme

Future work to complete dashboard

Kansas Wate Hub

Motivation

Data

Descriptive Analysis

Future Work

Include USGS water quality data

While we have worked to process the water quality tests conducted by KDHE and the EPA Region 7 Office, more work needs to be done to process the USGS water quality data.

Obtain updated water quality tests

Work with KDHE to obtain updated information about water quality tests post-2016.

Work to include the PWS water quality testing

Initial work has been done to scrape and process the CCRs for 2024. We need to work to obtain more historical information and to make the 2024 data useful for analysis.

Future research work on the economics of water quality in Kansas

Kansas Wate Hub

Motivation

Data

Descriptive Analysis

Future Work

- **1** Water Quality Portal tests surface-level water.
- 2 Consumer Confidence Reports measure contaminants in municipal water.

What could happen if we combined this data?

- 1 A wealth of information is sitting in these consumer confidence reports that is unstructured.
- If we are able to connect surface water quality tests with Consumer Confidence Report water quality tests, it is possible to model the burden public water systems face to clean their water - and this would produce a cost estimate.

Developing work with public water systems

Kansas Wate Hub

Motivation

Data

Descriptive Analysis

Future Work

Collect data from Consumer Confidence Reports

- **1** The CCR Rule requires each Public Water System to provide an annual report on the quality of their water.
- 2 The CCR includes a variety of important information about a PWS, including the drinking water source, and monitored contaminants found in drinking water, and whether a PWS meets state and federal drinking water standards.

To date, we have scraped the CCR information for the public water system reports posted for 2024. Looking for more historical information as well.

Example CCR (KDHE CCR Page Link)

Kansas Wate Hub

Motivation

Data

Descriptive Analysis

Future Work

Testing Results for: CITY OF ABBYVILLE

Microbiological		Result		м	CL		MCLG		Typical Source
COLIFORM (TCR) In the m returned		he month of October, 1 sample(s) arned as positive		Treatment Trigger	Techn	ique	0		Naturally present in the environment
Regulated Contamin	ants	Collection Date	Highest Value	Range (low/high)	Unit	MCL	MCLG		Typical Source
BARIUM		1/12/2021	0.14	0.14	ppm	2	2	Dis	charge from metal refineries
CHROMUM		1/12/2021	1.4	1.4	ppb	100	100	Dis	charge from steel and pulp mills
FLUORIDE		1/12/2021	0.57	0.57	ppm	4	4	Nat	ural deposits; Water additive which promotes ing teeth.
NITRATE		1/18/2022	7.6	7.6	ppm	10	10	Ru	noff from fertilizer use
SELENIUM		1/10/2021	2.2	2.2	onh	50	50	Ere	aircoal language and an arrited and a second

Lead and Copper	Monitoring Period	90 th Percentile	Range (lowihigh)	Unit	AL	Sites Over AL	Typical Source
COPPER, FREE	2019 - 2021	0.185	0.046 - 0.23	ppm	1.3	0	Corrosion of household plumbing
LEAD	2019 - 2021	0.5	0 - 30	ppb	15	0	Corrosion of household plumbing

If preset, character land under of land can asses serious health problems, specially for prograd momen and young driftens. Lass in driving wheth a primitry from manneals and compositions associated with varies of use a broke publicity. You will replan the speciality for present long, you can mine the potential for keep series and the primitry for primate and the proprime of the primitry for any associated with varies of the angle and primitry for many series that the primitry for any series that any series of the primitry for any series that the primitry

Chlorine/Chloramines Maximum Disinfection Level	MPA	MPA Units	RAA	RAA Units
2022 - 2022	1.3700	M3/L	1.1	MG/L

Secondary Contaminants – Non-Health Based Contaminants - No Federal Maximum Contaminant Level (MCL) Established.	Collection Date	Highest Value	Range (lowfhigh)	Unit	SMCL
ALKALINITY, TOTAL	1/12/2021	290	290	MG/L	300
CALCIUM	1/12/2021	70	70	MG/L	200
CHLORIDE	1/12/2021	77	77	MG/L	250
CONDUCTIVITY @ 25 C UMHOS/CM	1/12/2021	910	910	UMHO/CM	1500
CORROSIVITY	1/12/2021	0.25	0.25	LANG	0
HARDNESS, TOTAL (AS CACO3)	1/12/2021	200	200	MG/L	400
MAGNESIUM	1/12/2021	7.1	7.1	MG/L	150
NICKEL	1/12/2021	0.0059	0.0059	MG/L	0.1
PH	1/12/2021	7.6	7.6	PH	8.5
PHOSPHORUS, TOTAL	1/12/2021	0.041	0.041	MG/L	5
POTASSIUM	1/12/2021	2.2	2.2	MG/L	100
SILICA	1/12/2021	27	27	MG/L	50
SODIUM	1/12/2021	130	130	MG/L	100
SULFATE	1/12/2021	25	25	MG/L	250
TDS	1/10/2018	520	520	MG/L	500

Please Note: Because of sampling schedules, results may be older than 1 year.

During the 2022 calendar year, we had the below noted violation(s) of drinking water regulations.

Compliance Period	Analyte	Comments
12/30/2021 - 5/9/2022	LEAD & COPPER RULE	LEAD CONSUMER NOTICE (LCR)

Future research work on the economics of water quality in Kansas

Kansas Wate Hub

Motivation

Data

Descriptive Analysis

Future Work

- **1** Water Quality Portal tests surface-level water.
- 2 Consumer Confidence Reports measure contaminants in municipal water.

Economic Calculation

Several models exist for water treatment cost calculations. We propose to use the model from the EPA: LINK $\ensuremath{\mathsf{EPA}}$

Questions and Feedback

Kansas Wate Hub

Motivation

Data

Descriptive Analysis

Future Work

Thank you for your survey responses

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00